Redshift Identification Study: Effects of Line Flux and Resolution

Jonathan Pober 11/20/2009 BigBOSS Collaboration Meeting

Outline

Principal Component Analysis z-finding method

- Simulation Results
 - Line flux effects
 - Spectrograph resolution effects

Principal Component Analysis

- Most basic level:
 - Observed Spectrum = Σ [(Coefficient), × (Template),]

- Reduced χ² problem
 - Find the coefficients that minimize:

```
\chi^2 = [\Sigma \text{ (Coefficient)}] \times (\text{Template}] - (\text{Observed Spectrum})]^2
(Observed Spectrum)
```

Emission Line Spectra Fitting

- Templates = Spectral Lines
 - Perform multiple fits with many sets of templates, each with unique z and σ (velocity dispersion)
- Interested not so much in template coefficients, but which (z,σ) pair produces lowest χ^2

- Use individual templates for each line
 - OII, OIII, Hβ
 - No assumptions about line flux ratios

Example: z = 1.45537

OII Doublet at 9151Å

Template Fitting: Overview

Template Fitting: Details

- Template z's range from 0.7 to 2.0
 - Steps of 6×10^{-5} (~15 km/s)
- Template σ 's range from 10.0 to 150.0 km/s
 - Steps of 1 km/s
- Look for minimum χ^2 in z- σ plane
 - Fit Gaussian to minima
 - Width of Gaussian gives estimate of uncertainty in z, σ
 - Typical σ_z : < 10^{-4}
 - Typical σ_{σ} : 10 km/s

Simulation Results: Line Flux Effects

Line Fluxes

- Minimum Detectable Line Flux (MDLF)
 - MDLF = $2.5 \times 10^{-17} \text{ ergs s}^{-1} \text{ cm}^{-2}$

 Simulate sets of 2000+ spectra where line flux is constrained to be a multiple of the MDLF

 Look at z-finding success rate for simulated response of both CCD and HgCdTe detector

HgCdTe Results

Note: error bars are simply Poisson scatter based on the number of objects in each bin

CCD Results

Individual Case: HgCdTe 1.0 MDLF

What Causes Misfits?

Systematics: Redshifts

- $\sim 2 \times 10^{-4}$ offset between true z and recovered z
 - Discrepancy between code for spectrum simulation and templates
- $\sim 5 \times 10^{-4}$ biasing with higher z
 - Attributable to the same error?

Systematics: Velocity Dispersions

- Large scatter in σ , but values not crazy
- No obvious biases

DEEP-II Luminosity Function Results

Simulation Results: Resolution Effects

Resolution Effects

 What effect does resolution have in redshift-finding success rate?

- Simulate spectra of various resolutions at MDLF
 - Number of pixels kept constant → wavelength coverage differs between simulations
- Focus on OII doublet

CCD Results

HgCdTe Results

HgCdTe High-z Close Up

- Success appears to be a weak function of dispersion
- Initial spectrum simulation resolution may be limiting effectiveness of high resolution templates

Possible Improvements

- Lots of information in spectra not utilized
 - Continuum emission
 - PCA coefficients / line fluxes
 - negative coefficient → fit to noise
 - unreasonably bright lines at high $z \rightarrow misfit$
 - Doublet shape
 - Second best fit
 - True z should have significantly smaller χ^2 than second best fit
- Additional spectroscopic coverage to ensure OII detection

Conclusions

 OII doublet is a sensitive tool for detecting emission line galaxy redshifts at z > 1.0

 For reasonable assumptions about line fluxes, success rates are ≥ 90%

Success rates are a weak function of spectrograph resolution

 Higher success rates certainly possible with more sophisticated code!